2. Calculate the wavelength (in nanometer) associated with a proton moving at $1.0 \times 10^3 \text{ms}^{-1}$ (Mass of proton = $1.67 \times 10^{-27} \text{kg}$ and h = $6.63 \times 10^{-34} \text{Js}$)

- (1) 2.5 nm
- (2) 14.0 nm
- (3) 0.032 nm
- (4) 0.40 nm

Solution:

Given $m_p = 1.67 \times 10^{-27} \text{kg}$

 $h = 6.63 \times 10^{-34} Js$

 $v = 1.0 \times 10^3 \text{ms}^{-1}$

We know wavelength $\lambda = h/mv$

 $\lambda = 6.63 \times 10^{-34} / (1.67 \times 10^{-27} \times 1.0 \times 10^{3})$

 $= 3.97 \times 10^{-10}$

≈ 0.04nm

Hence option (4) is the answer.